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ISOMETRIES OF THE SPACE 
OF CONVEX BODIES 

CONTAINED IN A EUCLIDEAN BALL 

BY 

PETER M. GRUBER 

ABSTRACT 

The isometries of the space of convex bodies contained in a Euclidean ball with 
respect to the symmetric difference metric are precisely the mappings generated 
by rotations of the ball. 

1. Introduction 

A convex body in d-dimensional  Euclidean space E d is a compact  convex 

subset of E d with nonempty  interior. Let ~ ( B  d) denote the space of'all convex 

bodies contained in the solid unit ball B d and define the symmetric difference 
metric O on ~ ( B d )  by 

O ( C , D ) : = I x ( C A D )  for C,D E~(B~) .  

Here /x is the Lebesgue measure on E a and A the symmetric difference. 

The metric space (~(Ba),O) and other closely related spaces have been 

investigated by several authors. We mention Dudley [1] who found an asympto-  

tic formula for the e -en t ropy  of ( ~  (B a ), 0).  Our  contribution is the following 

THEOREM. A mapping I:  ~(Bd)---~ ~ (B  a) is an isometry of (~(Bd),O) 
precisely when there is a linear isometry i of E d such that 1(C) = i(C) for each 
C E qg(B~). 

This result belongs to a series of characterizations of the isometries of various 

spaces of convex or compact  subsets of E d, S d, T d, endowed with the Hausdorff  

metric or the symmetric difference metric (see [2]-[5], [7], [8]) where S d and T ~ 

denote the Euclidean sphere and the torus of dimension d. In each case it turned 

out that the isometries were either generated by rigid motions or certain 
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measure preserving maps of the underlying space or had strong relations to such 

maps. The case of the d-dimensional hyperbolic space H a has not been 

investigated so far. 

2. Proof of the theorem 

For simplicity write ~ instead of ~(B~) .  We call a convex body of ~ a cap if it 

is different from B d and can be represented as the intersection of B d with a 

closed half-space. For each cap C there exists a unique cap C ~ such that 

C U C c = B d and C, C c have disjoint interior. Call C c the complementary cap 

of C. If C is a cap, a vector c = c ( C ) E  C is called the centre of C if c is a unit 

vector such that C is symmetric in the line through the origin o and c. The width 

w = w(C)  of a cap C is the length of the intersection of the line through o and 

c(C) with C. Let to~ denote the measure of the k-dimensional  unit ball. II [[ is 

the symbol for the Euclidean norm in E a. 

For a linear isometry i of E ~ (into itself) the mapping I : qg ~ ~ defined by 

I ( C ) : =  i(C) for C E ~ is clearly an isometry of (cr 0) .  

Now assume conversely that I : cr ~ cg is an isometry of (cr O). 

Our  first aim is to prove: 

(1) i [ C E  ~ is a cap then I (C)  is a cap too. 

Let C •  cr be a cap. Then 

ton = O(C, C c) = O(I(C), I(CC)) = g ( I ( C )  U I (CC)) -  g ( I ( C )  n l(CC)) 

<-_ ~ (I(C) U I (C  c)) <= w,~. 

Hence equality holds throughout. Thus ~ ( I ( C )  U I(CC)) = to~, 

i.t(I(C) n I(CC)) = 0 and therefore I (C)  U I (C c) = B ~ and I(C), I (C  c) have 

disjoint interior. This implies (1). 

The main step of the proof is to show that 

(2) I (B ~) is equal to B ~ 

Assume the contrary. We consider a sequence of caps C,, C2, �9 �9 �9 with limit B d. 

Then the sequence I(C1), I(C2)," �9 �9 has limit I (Bn) ,  since I is continuous. By (1) 

the convex bod i e s / (CO,  I(C2)," �9 �9 are caps. Hence I (B ~) is a limit of caps and 

thus either equal to B n or a cap. Since the former  is excluded by assumption, 

I (B d) is a cap. We show that 

(3) O( I (C) ,  I (Bd)  ~) --/.~ (C) for each C E ~. 
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Let C E cs Then 

,o, - ~ ( c ) =  ~(B ~ \ C ) =  O(B ~, C ) =  O(I(B"), t (C))  

= i~ ( I (Bd) \ I (C) )+  p . ( I (C) \ I (Bd) )  

= t.t(I(Bd)) - I z ( I ( C ) \ I ( B d y ) +  tZ(I(BJy)  - tz(I(B~) ~ \ I (C))  

= tz (I(B~))+ Iz ( I (Bdy)  - O(I(C),  I ( B d y )  

= o~. - o ( I ( c ) ,  ~ ( B ~ ) ~ ) .  

Thus (3) holds. It follows from (3) that for C E cs the image I(C) is arbitrarily 

close to the cap I(Bd) c if the measure of C is sufficiently small. Applying this 

remark to caps and taking into account that by (1) the image of a cap is also a 

cap, we obtain the following: 

t There exist constants a > 0 and 0 </3 < �88 such that 
(i) for each cap C with ~ ( C )  < a the width wc of the cap 

(4) I(C) satisfies the inequality/3 < wc = 2 - /3 ,  and 

(ii) for any two caps C, D with/z (C), ~ (D) _<- a the centres 

co, cd of the caps I(C), I(D) satisfy the inequality lice - cd II--</3. 

The next proposition is as follows: 

There exists a constant T > 0 such that for any two caps C, D 

with /x (C),/x (D) = a the inequalities 

(5)  ~ (ll c~ - cd II + I wc - w~ I) --< o ( I ( c ) ,  I ( D ) )  

<-• 
hold. Y 

Choose caps C, D with tx(C),l.t(D)~ a. We may assume wc = w~. Among the 

three cases /3 =< W, =< Wd =< I , /3=W~=<l < w a = 2 - / 3  and 1--<wc=<wa < 2 - / 3  
we consider only the first one. The two remaining cases can be settled in a similar 

way. Let H denote the hyperplane containing the circular face (of dimension 

d - 1 )  of I(D) and let p be the point of I(C)A I(D) having maximal distance 

from H. Denote this distance by 6. Let ~v be the angle between C~, cd. (See Fig. 

1.) It follows from (4i) that (2we - w2~) 1/2 => (2/3 - /3 : )  '/2. Since by (4ii) the inequal- 

ity Ilcc-c~ll----/3 holds we have 0 < q ~ < z r / 2 .  Note that sinq~==_sin(~0/2)= 
II cc - c a  11/2. Hence elementary arguments yield the following upper and lower 

bounds for 6: 
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I wd-Wc[  ! ': c c "Cdll 

/ 

Fig. 1. 

a <-lice - r  I I+ } w c -  w~ }, 

a = ((2w~ - w~) ':2- ([[cc - ca I]/2))sin r + lwc  - wa I 

= ((2/3 -/3~')~/'-- (fl/2))sin(~o/2)+lw~ - wa I 

_-> 2/3 (ll cc - cd 11/2) + I w, - wd I =>/3 (11 c~ - ca II + I wc - w~ I). 

I ( C ) A  I ( D )  is contained in a circular cycl inder of basis radius 1 and height 26. 

From this and from the fact that I ( C ) A  I (D)conta ins a cone with apex p and a 

semicircular basis of radius (2wa - w]) '/'- in H we infer that 

((2wd - w~)'/z) ~-' . o2~_,6/2d <-_ 0 ( I ( C ) ,  I ( D ) )  <= 2&od ,. 

Using the bounds  for 6 just found and the fact that /3 _-< wd _-< 2 - / 3  by (4i) it thus 

follows that  

(,,,~/3d/2d)(llcc -- Ca II +lWc -- W~ I) -< O ( I ( C ) ,  I (D) )  

_<- 2oJa-,([[cr - call +[wr - wa I)- 

This proves (5). Consider the normed linear space 

L : =  {(c, w ) l  c (E E n, w (E R} with II (c, w ) l l : -  II c II + I w I. 

If C~, i E {l," �9 ", k} are pairwise disjoint caps of equal  measure  e =< a and if c~ 

and w~ are the centres  and widths, respectively,  of I(C~), then (5) together  with 

tg(I(C,) ,  I ( Q ) )  = 0(C, ,  Q )  = 2e implies 
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for i, j E { 1 , . . . , k } ,  i ~ j .  

Hence the ball in L with centre (c~, w~) and radius 2e/3, contains k points with 

mutual distance _-> 2e3,. Expanding by the factor 3,/(2e) yields that in L there 
exists a ball of radius 1 which contains k points with mutual distance _-> 3, 2. 

Therefore k is bounded in terms of 3,. Since on the other hand k can be chosen 

arbitrarily large we arrive at a contradiction. This concludes the proof of (2). 

From (2) we draw a number of easy consequences: 

(6) I is measure preserving. 

Let C E rs Then by (2) 

IX (B a) _ Ix (C)  = Ix (B a \ C)  = 0 (B a, C)  = 0 ( I ( B  a ), I ( C ) )  

= O(B  d, I ( C ) )  = Ix(B d \ I ( C ) )  = Ix(B ~) - Ix ( I (C)) .  

This proves (6). 

(7) I is inclusion preserving. 

Choose C, D E ~ with C C D. Then (6) yields 

I x ( I (D  ) ) -  I x ( I (C) )  = I x (D)  - Ix (C)  = t z (D  \ C)  = O(C, D )  

= O ( I ( C ) ,  I ( D ) )  = Ix ( I ( C ) ) +  I x ( I (D) )  - 2Ix ( I (C)  f3 I ( D ) )  

and thus 

Ix ( I (C) )  = I x ( I (C)  f3 I (D) ) .  

Since I(C),  I ( D ) a r e  convex bodies, this implies I ( C ) C  I (D) ,  concluding the 

proof of (7). 

We approach the end of the proof. For 0 < p < to~ denote by ~p the space of 
all caps of measure p. 

(8) { Let 0 < p < toa. Then there exists a linear isometry ip of  E ~ such 

that I ( C )  = i o (C)  for all C E ~ .  

For c G S  ~-~ let C ( c ) E ~ o  denote the cap with centre c. The following 

propositions are obviously true: 

There exists a constant ~- > 0 such that for all c, d E S a-j the 

(9) inequality IIc-dll<  holds if and only if O ( C ( c ) , C ( d ) ) <  

min{2p, 2toa - 2p} =: v. 
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There exists a strictly increasing surjective function 

(10) ~ : [0 ,  r[---~[0, v[ such that for all caps C , D ~ %  with 

0 ( C , D ) <  v the equality ~ , ( l l c ( C ) - c ( D ) l l ) =  O(C,D)holds. 

Let 

ip: S" '--~ S ~ ' be defined by ip (c ) :=  c(I(C(c))) for c E S d ' 

By (1) the mapping ip is well defined. We prove: 

(11) letc, d ~ S  d ' w i t h l l c - d [ [ < ~ - ;  then[lc-dll=llip(c)-ip(d)[[. 

Since II c - d II < ~, proposition (9) implies that 

o(C(c), C(d)) < .. 

Since C(c), C(d) are caps of measure p, it follows from (1) and (6) that I(C(c)), 
I(C(d)) are also caps of measure p, that is, l(C(c)), I(C(d)) E %. Obviously 

o(t(C(c)), 1(C(d))) = O(C(c), C(d))< .. 

Thus (10), applied twice, together with the definition of i, shows that 

~,(llc - d/I) = O(C(c ), C(d)) = O(I(C(c )), I(C(d))) 

= ~ ( l l c ( t ( C ( c ) ) )  - c ( I ( C ( d ) ) ) l l )  = g,(ll ip ( c ) -  i, (d) l l ) .  

Hence the strict monotonicity of ~b yields IIc - d II = II ip ( c ) -  ip (d)l I, thus proving 
(I1). It follows from (11) that i~ preserves the Euclidean lengths of continuous 

curves on S ~-~. Hence i~ is a rigid motion. Extend ip to a linear isometry of E ~ 

which will also be denoted by i~. For each cap C E % we have c(l(C))= 
i~(c(C)) by the definition of ip, that is, the centre of I(C) coincides with the 

image of the centre of C under ip. Since by (I) and (6) also I(C) is a cap of 

measure p, like C, we conclude further that 1(C)= i~ (C), thus proving (8). 

(12) ip = i~ for 0 < p < o" < OJd. 

Let D ~ ~ ,  and choose x ~ D fq S ~j .  There exists a cap C E % such that 

x ~ C C D. We have i~(x )~ i , (C)= I ( C ) C  I ( D ) =  i~(D)by (6), (7 )and  (8). 

Hence i~ (D fq S ~-I) C i~ (D) and thus ip (D) C i~ (D). Since i~ (D), i~ (D) are caps 

of equal measure, equality holds: ip (D) = i,, (D). Since D was an arbitrary cap of 

C,,, the linear isometries i~, i,, coincide. This proves (12). 
It follows from (8) and (12) that 

(13) [ there exists a linear isometry i of E d such that I(C) = i(C) for 

t each cap C. 
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More generally we have 

(14) I(D) = i(D) for each D E cr 

Let D ~ c~. Then (7) together with (13) yields that 

for each cap C the inclusion D C C implies I(D) C i(C). 

Hence I(D)C i(D). Since I is measure preserving (see (6)), the convex bodies 

I(D), i(D) have the same measure and therefore coincide. This proves (14), thus 

finishing the proof of the theorem. 

3. Final remarks 

The description of the isometries of the spaces of convex bodies of E d, S ~ and 

B u with respect to the symmetric difference metric 0 (see [2], [7] for E ~, S d) can 

be considered as the first step towards a description of the isometries of spaces of 

measurable subsets of a given measure space, endowed with the symmetric 

difference metric. Considering this problem it is surprising to note that for many 

spaces of integrable functions the corresponding isometries are well known. (See 

[4] for some references.) 
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